- Найден новый способ превращения тепла в электричество
- Как превратить тепло в электричество
- Термогенератор своими руками: инструкция по изготовлению преобразователя тепловой энергии в электрическую
- Как определить термоЭДС металла?
- Принцип работы
- Конструкция термогенератора
- Изготовление своими руками
- Порядок работ
- Изготовление преобразователя
- Вариант 1
- Вариант 2
- Вариация на тему…
- Видео на тему
- Что такое термоэлектрический генератор?
- Что такое термоэлектрический генератор?
- Принцип работы
- Перспективы
- Сфера применения и виды термоэлектрических генераторов
- Энергопечи
- Радиоизотопные ТЭГ
- Сфера применения РИТЕГ
- Как сделать термоэлектрический генератор своими руками?
- Как получить электричество из тепла — использование элемента Пельтье для выработки энергии, сборка термогенератора
- Шаг 1: Необходимые детали
- Шаг 2: Конструирование
- Шаг 3: Тестирование теплогенератора
- Шаг 4: Улучшения
Найден новый способ превращения тепла в электричество
Уже достаточно давно человечество умеет превращать один вид энергии в другой. Скажем, при сжигании угля образуется тепло, которым можно обогревать наши дома, а в двигателе внутреннего сгорания автомобиля углеводородное топливо в виде бензина преобразуется в энергию, позволяющую автомобилю ехать. Но прогресс не стоит на месте и ученые регулярно находятся в поисках новых способов получения энергии, о которых мы вам сообщаем на сайте и в нашем Телеграм-канале. Так, совсем недавно команда экспертов из США представила новый способ превращения тепла в электричество. И он, надо сказать, весьма экстравагантен.
Наука предоставляет массу способов получения энергии. Порой из таких источников, о которых мы даже не догадывались
Как превратить тепло в электричество
По сообщению редакции издание EurikAlert, которое ссылается на исследование опубликованное в журнале Science Advances, группа ученых из Университета штата Огайо придумала, как улавливать тепло и превращать его в электричество. Причем использовать для этого можно любой источник тепла: от рассеивающегося тепла от промышленных установок и до выхлопов автомобилей.
Благодаря нашему открытию мы потенциально сможем более эффективно использовать ресурсы и получать больше электрической энергии из тепла, — сказал соавтор работы Джозеф Хереманс, профессор механики и аэрокосмической техники, занимающийся также исследованиями в области нанотехнологий в Университете штата Огайо. До сих пор никто не думал, что что-то подобное в принципе возможно.
В основе открытия лежит явление электромагнетизма (которое известно достаточно давно). Простой пример: когда одна сторона магнита нагревается, другая сторона остается холодной и наращивает свой потенциал. Из-за нарастания потенциала появляется избыток энергии, который можно преобразовать в электричество. Но есть одна проблема. Магниты при нагревании «теряют магнитную силу» и размагничиваются поэтому грубо говоря, для создания электричества из тепла магнит можно использовать «лишь один раз».
Тут на помощь приходят парамагнетики. Парамагнетики — это вещества, которые намагничиваются под воздействием магнитного поля, но при этом не теряют после прекращения воздействия эту, грубо говоря, «магнитную силу». И, что важно, парамагнетики устойчивы к воздействию тепла. Но и тут есть проблема: парамагнетики по сравнению с обычными магнитами «очень слабые» и до сегодняшнего дня считалось, что они не способны вырабатывать энергию.
Мы обнаружили, что это не совсем так. Мы нашли новый способ создания термоэлектрических полупроводников на основе парамагнетиков. Традиционные термоэлектрические системы, которые появились около 20 лет назад, слишком неэффективны и дают нам слишком мало энергии.
Совместив парамагнетики с полупроводниками, ученые создали интересное устройство: с одной стороны парамагнетики могут, нагреваясь и охлаждаясь, генерировать энергию. С другой стороны — полупроводниковые материалы позволяют использовать полученную энергию. Как заверяют ученые, электричество можно как запасать в обычных аккумуляторных батареях, так и сразу же пускать на питание электронных устройств и компонентов.
Под направленным воздействием магнитного поля парамагнетики приобретают магнитные свойства
Исследователи уверены, что их разработка может пригодиться именно на промышленном производстве, где потери рассеивающегося тепла довольно высокие и в таких масштабах установка по преобразованию тепла в электричество покажет наибольшую эффективность. Например, при переплавке стали отходящее тепло можно использовать для питания различных установок завода, что снизит конечную стоимость продукции.
Источник
Термогенератор своими руками: инструкция по изготовлению преобразователя тепловой энергии в электрическую
Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.
Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.
Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.
Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.
Как определить термоЭДС металла?
Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:
В физике данное явление называют эффектом Зеебека.
Величина термоЭДС зависит от вида материалов и разности их температур.
Определяют ее по формуле:
Е = к (Т1 – Т2),
Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).
Теплообменники широко применяются в быту. Довольно легко можно сделать теплообменник своими руками – инструкция по сборке представлена в статье.
Пошаговая инструкция по облицовке камина своими руками представлена тут.
Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/12-volt-svoimi-rukami.html инструкция по изготовления обогревателя 12 Вольт своими руками.
Принцип работы
Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.
Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.
Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.
Конструкция термогенератора
Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.
Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.
Изготовление своими руками
Схематично устройство самодельной термоэлектростанции можно представить так:
Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.
Порядок работ
Теперь рассмотрим процесс создания самодельного термогенератора в деталях:
Походный генератор электричества
Изготовление преобразователя
В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).
Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.
Рассмотрим два варианта.
Вариант 1
Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.
Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.
Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.
На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.
К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.
К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.
Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.
Вариант 2
Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».
К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.
Простейший походный термогенератор
Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).
Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.
Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.
Вариация на тему…
Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.
На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.
На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.
Батареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы – однотрубной или двухтрубной. Схемы подключения радиаторов отопления и советы по месту их установке – читайте внимательно.
Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены в этой статье.
Видео на тему
Источник
Что такое термоэлектрический генератор?
Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.
Что такое термоэлектрический генератор?
Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.
Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.
Схема работы ТЭС
Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.
Принцип работы
В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.
Обозначения:
При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.
Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.
По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.
Современный элемент Пельтье с указанием размеров
Перспективы
В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.
Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.
Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.
Молекула вместо термопары
Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.
Сфера применения и виды термоэлектрических генераторов
В виду низкого КПД для ТЭГ остается два варианта применения:
Приведем несколько примеров таких устройств.
Энергопечи
Данные, устройства, совмещающие в себе следующие функции:
Это прекрасный образец, объединяющий все оба варианта применения.
Индигирка – три в одном
У представленной на рисунке энергопечи следующие параметры:
Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.
Радиоизотопные ТЭГ
В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.
Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:
Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.
Сфера применения РИТЕГ
Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.
Радиоизотопное «сердце» Кассини
Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.
На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.
К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.
РИТЕГ поднятый с 14-митровой глубины возле Сахалина
Как сделать термоэлектрический генератор своими руками?
В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.
Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.
Основные моменты сборки:
Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.
Туристический ТЭГ
В качестве топлива лучше всего использовать «сухой спирт».
Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).
Конструкция готова, можно приступать к проверке.
Источник
Как получить электричество из тепла — использование элемента Пельтье для выработки энергии, сборка термогенератора
Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.
Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.
Шаг 1: Необходимые детали
Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.
Шаг 2: Конструирование
Построить корпус и тепловой генератор электричества довольно просто.
Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.
Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.
Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.
Шаг 3: Тестирование теплогенератора
Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.
Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.
На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.
Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.
Шаг 4: Улучшения
Возможные следующие модернизации устройства:
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Источник