Контроль напряжения в сети 220в своими руками

Содержание
  1. Простейший индикатор напряжения в сети
  2. Схема контроля за напряжением в сети
  3. Что такое реле контроля напряжения и для чего его используют в домах и квартирах
  4. Для чего нужно реле контроля напряжения
  5. Назначение кнопок и выводов
  6. Задержка времени включения
  7. Технические параметры
  8. Виды РН
  9. По типу корпуса
  10. По количеству фаз
  11. Распространенные схемы подключения
  12. Подключение однофазного РН
  13. Схема для трехфазного реле контроля напряжения
  14. Подключение нагрузок свыше 100 кВт с помощью контактора
  15. Рекомендации по выбору
  16. Настройка порогов срабатывания РН
  17. Проверка РН с помощью мультиметра
  18. Регуляторы напряжения на 220 В своими руками
  19. Что такое регулятор напряжения 220 В
  20. Виды, принцип работы, особенности
  21. Сборка регулятора напряжения на симисторах
  22. Второй вариант
  23. Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей
  24. На транзисторах
  25. Простая схема
  26. Другие варианты маломощных транзисторных схем
  27. Мощная сборка
  28. Схема самодельного РН 220 В с тиристорами
  29. Второй вариант
  30. Модификация, особенности, демонстрация работы
  31. Другие популярные схемы
  32. Для паяльника
  33. На микросхеме
  34. Для лампочек накаливания с тиристором
  35. Советы
  36. Предостережения по индуктивной нагрузке
  37. Видео по теме

Простейший индикатор напряжения в сети

В городских квартирах больших проблем с сетью не бывает. Бывает, из-за перегрузки фаз на линии — повышается напряжение, но обычно это ненадолго — автоматика на подстанции не срабатывает, и появляется повышенное напряжение в сети.

Когда я столкнулся первый раз с этой проблемой, напряжение в сети подскочило до 255 В! ИБП вылетают сплошь и рядом. А если на подстанции отвалится нулевая шина — быть беде! В сети появятся все 380 В! И некому предъявить претензии (только через суд) по поводу испорченной техники.

Индикаторные светодиоды светятся во время одного полупериода входящего на индикатор напряжения. Жёлтый светодиод LED1 горит всегда, когда присутствует сетевое напряжение. Динисторы VS1 и VS2 и резистивные делители напряжения (R2R4 и R3R5 соответственно) обеспечивают включение зелёного светодиода (LED2) и красного (LED3), когда напряжение достигает определённого значения (называется — порог срабатывани). Если будет значительное превышение напряжения, стабилитрон VD2 предотвратит выход девайса из строя.
Детали недефицитные, и всё в основном было в наличии. За высоковольтным стабилитроном КС680А пришлось съездить на Митинский радиорынок.

Печатные платы рисовал в компьютерной программе Sprint-Layout.

Чтобы регулировать и контролировать напряжение при настройке, использовал ЛАТР и мультиметр. При напряжении в 230 В добился устойчивого свечения зелёного светодиода. Если уменьшить напряжение до 200 В, зелёный светодиод погаснет — в противном случае надо увеличивать сопротивление R2. При напряжении в 260 В подстроечным сопротивлением установил порог срабатывания красного светодиода. Настройка завершена.

Индикатор поставил в распределительный щиток, который находится в квартире, и запитал его от входного автомата.

Источник

Схема контроля за напряжением в сети

Схема контроля за напряжением в сети предназначено для автоматического отключения потребителя если напряжение в электросети будет на 22 V отличаться от заданного. То есть, если задано 220V, то потребитель работает в диапазоне от 188 до 242V. Если напряжение выходит за эти пределы потребитель отключается.

Схема контроля за напряжением в сети построена на основе микросхемы LM3914. Это индикаторная микросхема, она обычно применяется для индикации напряжения или уровня сигнала. На её выходе шкала на 10 светодиодов, причем шкала может быть, как точечной, так и линейной. В данном случае выбран точечный вариант.

Суть работы схемы заключается в том, что используется только один, примерно средний по значению, выход микросхемы, к которому вместо индикаторного светодиода подключен светодиод оптопары ключевого устройство, подающего ток на потребитель. Датчик напряжения представляет собой выпрямитель на одном диоде и делитель напряжения. На вход микросхемы напряжение поступает с этого делителя.

Делитель настроен так, что при номинальном напряжении в сети открыт будет тот выход микросхемы, к которому подключена оптопара ключевого устройства. При этом загорается светодиод оптопары и ток на потребитель подается. Если напряжение отклоняется вверх или вниз на одну ступень или более этот выход микросхемы закрывается и открывается какой-то другой, не используемый в данной схеме. При этом гаснет светодиод оптопары и ток на потребитель отключается. Принципиальная схема устройства показана на рисунке ниже.

Датчик напряжения состоит из выпрямителя на диоде VD1, конденсатора С2 и делителя напряжения на резисторах R3-R5. Резистор R5 подстроечный, что позволяет напряжение регулировать.

Таким образом, уровень переменного напряжения в сети определяется по постоянному напряжению на резисторе R5. Так как R5 питается от сети через выпрямитель и резисторы R3, R4, то постоянное напряжение на нем в самой прямой зависимости от величины переменного напряжения в сети.

Резистор R5 подстроечный, это позволяет в процессе налаживания схемы, да и при эксплуатации, выбрать любое напряжение в сети, которое будет схемой считаться номинальным.

Вывод 9 микросхемы А1 соединен общим минусом источника питания, поэтому микросхема работает в режиме точечного индикатора, то есть, когда открыт только один её выход, тот который соответствует входному напряжению в данный момент.

Резистором R5 входной делитель настраивают так, чтобы при желаемом номинальном напряжении в сети был открыт 6-й выход микросхемы, то есть, вывод 14. При этом ток с вывода 14 поступает на светодиод оптопары U1, включенный вместо индикаторного. Оптопара открывается и открывает симистор VS1, через который подается питание на потребитель.

Если входное напряжение на одну или более ступеней снижается или увеличивается, то вывод 14 микросхемы закрывается, ток через светодиод оптопары U1 прекращается и потребитель выключается.

Для налаживания нужен ЛАТР или аналогичный лабораторный автотрансформатор и вольтметр переменного тока. Налаживание сводится к подстройке R5 так, чтобы схема работала, так, как это требуется. Впрочем, наладить можно и без ЛАТРа, если в момент налаживания напряжение в сети было нормальным, можно просто найти положения R5 при которых наступает выключение потребителя и повернуть R5 в среднее между ними положение.

Быстродействие схема контроля за напряжением в сети сильно зависит от емкости конденсатора С2, потому что от этого зависит быстрота изменения контрольного напряжения. Если нужно «затормозить» схему, можно его емкость увеличить, и наоборот, если нужно более быстрая реакция, его емкость нужно уменьшить. Но, сильно уменьшать емкость нельзя, потому что в таком случае конденсатор перестанет сглаживать пульсации, и контрольное напряжение станет не постоянным, а пульсирующим, что приведет к ошибкам в работе схемы.

Можно доработать схема контроля за напряжением в сети путем добавления индикаторных светодиодов на выходы, которые не используются. В таком случае, когда напряжение в норме не будет гореть ни один из этих светодиодов, а вот когда напряжение вышло за норму так, что произошло отключение потребителя, будет гореть светодиод, показывающий на сколько это отклонение от нормы существенно. Можно экспериментируя с ЛАТРом и вольтметром подписать эти светодиоды соответствующими их зажиганию значениями напряжения.

Если нужно расширить диапазон нормального напряжения, не ограничиваясь одной ступеней, можно соединить вместе соседние выходы микросхемы. Но соединять нужно через дополнительные диоды. То есть, взять диоды типа КД522 необходимое количество и катоды их соединить с соответствующими выходами микросхемы, аноды соединить вместе и с катодом светодиода оптопары. Но в таком большом расширении диапазона «нормальности» вряд ли есть смысл, хотя могут быть разные ситуации.

Читайте также:  Ловушки для нутрий своими руками видео

Диод VD1 можно заменить любым маломощным выпрямительным диодом на напряжение не ниже 400V.

Выходной каскад можно собрать и по другой схеме, используя другую оптопару и другой симистор. Можно вместо схемы на U1 и VS1 применить мощный оптосимистор или так называемое «твердотельное реле», которое по сути дела представляет собой либо мощный оптосимистор, либо схему, представляющую собой оптопару с ключом переменного тока на мощных высоковольтных полевых транзисторах.

Микросхему LM3914 можно заменить другой аналогичной, например, LM3915 или LM3916, но нужно принять во внимание, что, используя микросхему с логарифмической шкалой соответствия получаем и логарифмически неравномерные ступени. Хотя с этим можно мириться, скомпенсировав этот недостаток более тщательной регулировкой входного делителя, более тщательно наблюдая за пределами диапазона «нормальности» напряжения. И без ЛАТРа здесь уже не обойтись.

Источник

Что такое реле контроля напряжения и для чего его используют в домах и квартирах

Реле напряжения применяется для защиты бытовой техники от скачков в сети. Использование устройства заметно снижает риск выхода из строя дорогостоящей аппаратуры. Пригодится РН и для правильного функционирования промышленных агрегатов.

Для чего нужно реле контроля напряжения

Бытовые электроприборы рассчитаны на напряжение 220-240 В. Периодически в электросети возникают нештатные ситуации. Напряжение в розетке прыгает в большую или меньшую сторону. Скачки способны нарушить работу бытовой техники или вовсе вывести ее из строя.

Перепады напряжения в сети

Распространенный случай перепадов напряжения — это обрыв нуля. При этом на одной фазе напряжение падает ниже допустимого уровня. На другой, наоборот, происходит существенное превышение вольтажа вплоть до 380в.

Другая ситуация свойственна старым домам с плохой электропроводкой и разболтавшимися контактами. Из-за плохого состояния кабелей и их перегрузки напряжение в розетках способно упасть до 170 В и ниже. Это опасно для электрических двигателей стиральных машин и холодильников.

На защиту электроприборов встает реле контроля напряжения. Это небольшое устройство располагается в распределительном щитке квартиры. Оно имеет компактную конструкцию, удобно крепится на дин рейку и выполняет свою задачу полностью автономно.

Дополнительная информация. Нужно отличать реле контроля напряжения от всевозможных стабилизаторов и УЗМ. Все перечисленные устройства применяются для защиты бытовой техники. Стабилизатор — прибор активный. Он способен самостоятельно корректировать напряжение в квартире. РН выполняет более простую и пассивную функцию. Оно просто отключает потребителя при превышении допустимого порога и, само по себе, на вольтаж никак не влияет.

Назначение кнопок и выводов

На передней панели стандартного реле ограничения напряжения имеется 3 контакта. Они предназначены для подключения нулевого и фазных проводников. Если смотреть слева направо, то контакты имеют следующее назначение:

Выводы 2 и 3 — это нормально разомкнутые силовые контакты. Если напряжение между 1 и 2 находится в пределах нормы, то 2 и 3 замкнуты, и фаза может свободно проходить в сеть квартиры.

Устройство реле напряжения

Реле контроля напряжения имеет простой принцип работы. Внутренний контроллер непрерывно измеряет напряжение в сети. Если оно выходит за пределы нормы, то электромагнитное реле отключает квартиру. Устройство цифровое. Оно срабатывает как на чрезмерно высокий вольтаж, так и на заниженный.

Задержка времени включения

Для РН свойственна задержка включения. Если вольтаж провалился ниже допустимой нормы, то устройство выключится и разорвет контакты 2 и 3. Когда напряжение снова входит в норму, реле не включается. Оно выжидает некоторое время. Например, 15 секунд. Это необходимо, чтобы избежать ложных включений РН. Регулятор для настройки этого параметра предусмотрен на передней панели устройства.

На корпусе реле имеются кнопки с дисплеем. Они позволяют настроить диапазон рабочего напряжения и время задержки срабатывания. Подробная информация о настройке прибора содержится в руководстве по эксплуатации.

Технические параметры

К основным характеристикам РН относится рабочее напряжение, количество подключаемых фаз и максимальная пропускная мощность. Ниже рассмотрены параметры одного из популярных реле — RV-32.

Из характеристики следует, что реле питается от сетевого напряжения 220 В. Внутренние контакты способны длительно пропускать ток, равный 32 А, что соответствует потребителю мощностью 7 кВт. Класс IP 20 говорит, что устройство непригодно для работы во влажном помещении или на улице. Его допустимо устанавливать в специальный электрический щит. 100 тыс. рабочих циклов — это количество включений и отключений реле, которые оно способно перенести без разрушения.

Реле напряжения DigiTOP Vp-50A IP20 к содержанию ↑

Виды РН

В защите от скачков вольтажа нуждаются различные типы приборов. Некоторые из них работают от бытового напряжения 220 В и потребляют минимальную мощность. К примерам таких устройств относятся зарядные устройства для смартфонов или led лампочки. Другие так же работают от 220 В, но потребляют уже тысячи ватт мощности, например, электрические чайники и утюги. Третьи устройства требуют трехфазного питания 380 В. Обычное однополюсное РН им не годится. Среди таких потребителей промышленные станки и мощные асинхронные двигатели. Поэтому все реле для контроля напряжения принято разделять по типу корпуса и виду нагрузки.

По типу корпуса

Данная классификация указывает на то, какие приборы и в каком количестве возможно подключить к реле. По типу исполнения РН подразделяется на 3 вида:

Первый тип наиболее прост с точки зрения использования. Данное реле защиты от перенапряжения подключается непосредственно в розетку. С одной стороны корпуса имеется соответствующий разъем в виде штепсельной вилки. На другой части прибора расположена стандартная розетка для подключения нагрузки. Подобный тип РН можно быстро снять и подключить в другое место.

Второй тип выполнен в виде удлинителя. На его поверхности имеется несколько розеток для нагрузки. В отличие от 1-го типа данное реле оснащено кабелем с вилкой. Прибор удобен для стационарного подключения офисной техники.

Третий тип наиболее профессиональный. РН устанавливается в щиток. Оно имеет расширенный список функций, высокую пропускную мощность, и одновременно защищает все электрические приборы в квартире.

По количеству фаз

Электрические потребители, работающие от переменного тока, подразделяются на 2 группы. Подобное деление имеет и реле контроля напряжения. А именно:

Однофазная модификация пригодна для дома. Эти реле устанавливаются в квартирах, гаражах и дачах. Они пропускают через себя одну фазу и ноль. Поэтому их называют однофазными.

Рабочее напряжение для подобных РН составляет 220в. Их контакты рассчитаны на ток в 30-40 А, что соответствует максимальным значениям для квартирной проводки. Устройство имеет минимальный перечень настроек и, если почитать инструкцию, пригодно для пользования обычным человеком без профильного образования.

Трехфазное реле контроля напряжения ZUBR 3F

Второй вид реле сложнее. Он контролирует вольтаж одновременно на 3 фазах. Подобная модификация годится для агрегатов, потребляющих от сети 380 В. Реле имеет расширенный перечень регулировок и требует минимальный опыт в настройке систем автоматики.

Распространенные схемы подключения

Отличия существуют и в мощности потребителей, которые подключаются через РН. Одним достаточно для питания фазы и нуля. Другие требуют трехфазное питание. Для каждой категории мощности нагрузки необходима соответствующая схема подключения реле. Поэтому принято выделять 3 способа включения этих защитных устройств:

Подключение однофазного РН

Схема применяется для подключения потребителей на 220 В. Она пригодна как для квартиры, так и для отдельного устройства.

Первоначально имеется однофазное РН, питающая и отходящая линии. Монтаж схемы производится по нижеизложенному плану:

Схема для трехфазного реле контроля напряжения

Разные модели трехфазных реле контроля напряжения имеют отличающийся набор клемм для подключения проводов. В стандартной комплектации их 8. Клеммы напряжения сети (4 шт.) нужны для подачи в устройство трех контролируемых фаз и нуля. На корпусе прибора они обозначаются L1, L2, L3 и N. Выходные релейные клеммы (4 шт.) используются для подключения последующих устройств защиты и автоматики. Они имеют маркировку «NO» у нормально открытых контактов, и «NC» у нормально закрытых.

Читайте также:  Капельный полив для домашних цветов своими руками

Схема подключения собирается в 2 этапа:

Обратите внимание! Дорогостоящие трехфазные РН способны контролировать не только напряжение, но и ряд других параметров сети. Например, критический перекос фаз и правильность их чередования. Эти функции важны для правильной работы асинхронных двигателей и тиристорных преобразователей.

Подключение нагрузок свыше 100 кВт с помощью контактора

Некоторые потребители электроэнергии берут от сети токи в сотни ампер. Никакое РН не способно справиться с такими мощностями. В этой ситуации используют отдельный контактор. Его необходимо соединить с выходным реле.

В этой схеме РН просто контролирует состояние сети и формирует слаботочный сигнал управления для контактора. Его втягивающая катушка подключается последовательно с выходом реле контроля напряжения. Основной ток нагрузки протекает непосредственно через контактор.

Важно! Не следует ставить РН рядом с мощными источниками радиопомех, например, трансформаторами или беспроводными телефонами. Испускаемые ими помехи способны повлиять на измерительную цепь реле и привести к ложным срабатываниям.

Рекомендации по выбору

Из вышесказанного вытекает, что существует множество видов реле контроля напряжения. Подбор осуществляется с учетом конкретной ситуации, в которой РН предстоит работать. Наиболее значимые критерии выбора реле контроля напряжения таковы:

Дополнительная информация. Существуют реле контроля напряжения, оснащенные встроенным амперметром. Эти приборы позволяют отслеживать потребляемый квартирой ток. На них возможно организовать защиту от короткого замыкания или перегрузки сети.

Настройка порогов срабатывания РН

Настройка реле защиты от перенапряжения производится после анализа текущего состояния электросети и проводки. Необходимо обратить внимание на такие факторы, как:

Проверка РН с помощью мультиметра

Полноценные испытания удастся провести при помощи специального оборудования в электротехнической лаборатории. Однако точность показаний выходного вольтажа получится проверить и обычным мультиметром. Прибор необходимо переключить в режим измерения переменного напряжения до 700 В. На переключателе это обозначается как «ACV 700».

Затем мультиметром предстоит определить напряжение на выходе РН, и сравнить это значение с показаниями на дисплее защитного устройства. Нужно понимать, что оба прибора имеют некоторую погрешность измерения. Показания должны примерно совпадать. Разница в 2-3 В — это не повод для паники. Но если отличия более существенны, то в РН есть неисправность.

Применение РН защитит бытовые электроприборы от перепадов напряжения. Для этого потребуется правильно подобрать уставки его срабатывания. Ориентировочные значения можно посмотреть в паспорте на устройство.

Реле контроля напряжения выбирается с учетом количества питающих фаз и максимальной мощности потребителя. Желательно приобретать защитное устройство с запасом по току в 20-30 %. Если необходимо контролировать потребляемый ток, то лучше установить прибор со встроенным амперметром.

Источник

Регуляторы напряжения на 220 В своими руками

Создав регулятор напряжения 220 В (в дальнейшем РН), пользователь получит возможность определять его величину, поступающую в электроприборы. Станет возможной настройка уровня нагрева, света, оборотов не слишком мощных моторов бытовых аппаратов простым поворотом селектора на такой самоделке. Сборка не слишком сложная, поэтому кустарное изготовление целесообразное. Мы выбрали и рассмотрели самые понятные схемы с обозначением характеристик деталей для конструирования РН 0–220 В своими руками.

Что такое регулятор напряжения 220 В

Сокращенное название рассматриваемого прибора — РН 0–220 В. Самый простой такой аппарат — это диммер для ламп накаливания. Устройство настраивает сетевые параметры напряжения, повышает/понижает степень выходного сигнала на диапазоне, зависимом от значения разности потенциалов на его выходе. Поддерживает заданный вольтаж цепи потребителя.

Аппарат регулирует (плавно или ступенчато) именно саму величину напряжения, вольтаж, от которого также зависит мощность в диапазоне возможностей подключенного агрегата. Работает с нагрузкой реактивной, активной, только надо уточнять, подходит ли конкретная сборка, особенно для последней. А также всегда надо сопоставлять, на какую обслуживаемую мощность (Ватты) рассчитана схема.

РН изменяет согласно настройкам пользователя уровень выходного сигнала из сети 220 В, подаваемый на подключенную к нему нагрузку. Таким образом, устанавливается параметр, подходящий для запитывания конкретного прибора, а чаще для регулировки его работы (снижение/повышение оборотов маломощных электромоторов, яркости света).

Важно: РН-220 В понижает/повышает только значение напряжения (В), выходящего из сети 220 В — ток (Амперы), мощность (Вт, кВт) он не регулирует, эти величины изменяются уже самой полезной нагрузкой, ограниченной рамками своих характеристик, согласно поданным вольтам. Прибор иногда называют «регулятором мощности», так как изменяются также возможности подключенного потребителя по указанным параметрам. Но РН надо отличать от такового, как и от регулятора тока.

Регулятор напряжения применяют:

Чаще всего бытовой РН 0–220 В применяется для плавного вкл./выкл. приборов.

В заводских моделях обычно также есть микросхема для стабилизации напряжения при его скачках, обеспечивающая работу приборов в любом режиме. Тиристорный регулятор по англоязычным стандартам именуют Voltage Controller. РН снабжают универсальные блоки питания, на которых можно настраивать вольтаж.

Виды, принцип работы, особенности

РН по нашей теме предназначен только для переменного напряжения, то есть для обычной домашней сети 220 В.

Чаще всего собирают на базе таких деталей:

В схемах присутствуют также конденсаторы, резисторы постоянные, настроечные. Именно селекторами последних осуществляется регулировка. Сложные сборки могут включать микросхемы.

РН максимально результативные для резистивных (активных, омических) нагрузок, то есть являющихся частью потребляемой мощности подсоединяемого/отключаемого потребителя. Это сопротивление движению тока, например, в виде резистора, на точке, где электричество преобразовывается в тепло.

Резистивная нагрузка — это нагревательные элементы, ТЭНы, лампы накаливания (не «экономки»).

В индуктивной нагрузке ток (там он значительно ниже, чем при резистивной) отстает от напряжения, создается реактивная мощность. Это асинхронные электродвигатели, электромагниты, дроссели, трансформаторы, выпрямители. С ними РН не будут работать или будут, но не эффективно, создавая риск поломки оборудования. Там регуляторы напряжения не всегда целесообразные.

Тиристорный прибор нельзя использовать со светодиодными (экономными) и люминисцентными лампами. Конденсаторные регуляторы не позволяют плавно менять напряжение.

Сборка регулятора напряжения на симисторах

В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:

С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.

Второй вариант

Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.

Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.

Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.

Читайте также:  Корзинка цветов на свадьбу своими руками

Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей

Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:

Графически схема выглядит так:

Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:

Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.

Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.

Конструкция помещается в любую коробочку, пример:

Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.

На транзисторах

Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.

Простая схема

Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.

Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:

Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.

Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.

Другие варианты маломощных транзисторных схем

С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.

Мощная сборка

Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.

Схема самодельного РН 220 В с тиристорами

Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления.

Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1–VD4 на радиаторы (охладители), то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2.3 кВт.

В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. мост трансформирует переменное напряжение в однополярное пульсирующее, фазовую настройку полупериодов обеспечивает тиристор.

R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности.

C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет. Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 (транзисторы) — это состав маломощного тиристора. При достижении значения на переходе база/эмиттер VT1 пороговой отметки транзистор открывается и отпирает VT2, а тот в свою очередь — тиристор.

Второй вариант

Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное. Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку. С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке.

Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится. Существуют две почти идентичные схемы по описываемому варианту:

Схема регулятора состоит из доступных деталей, ее можно полностью собрать из таковых даже советского периода. При включении (как на изображении) выпрямительных диодов прибор выдержит до 5 А, что соответствует 800 Вт…1 кВт. Но надо поставить радиаторы для охлаждения.

Мощность можно повысить, если заменить диоды, рассчитанные на больший необходимый ток. Также можно вместо тиристора КУ202 с пределом в 10 А поставить помощнее: Т122, Т132, Т142.

Деталей не много, допустим навесной монтаж, но с платой сборка будет красивее и комфортнее. Стабилитрон Д814В можно поменять на любой с 12–15 В. Из коробочки выведен разъем для вилки.

Модификация, особенности, демонстрация работы

Схема также может поместиться в корпусе наружной розетки, в маленькой пластиковой распаячной коробке. Мощность самоделки ограничена диодным мостом (1000 В, 4 А), тиристором. Напомним, в нашем примере предел чуть больше 800 Вт, максимум — 1000 Вт. Для бытовых условий этого более чем достаточно.

Радиаторы на тиристоры и диоды крайне рекомендованы — в данном случае они не просто желательные, а жизненно необходимые, так как перегрев может быть значительным. Минимальная мощность резистора R1 — 2 Вт

Другие популярные схемы

Приведем простые, доступные проверенные схемы. Опишем их кратко, так как на самом изображении есть расшифровка элементов.

Для паяльника

Чрезвычайно простые схемы для плавной регулировки нагрева паяльника применяют для предотвращения перегрев жала.

Первая схема включает мощный симистор, управляющий линией тиристор-переменник.

Другой простейший вариант для паяльника: нагрузка управляется одним тиристором, степень включения его определяется регулировкой переменного резистора, диод поставлен для защиты от обратного напряжения.

На микросхеме

Применена микросхема фазового регулирования 1182ПМ1. Этот контроллер управляет уровнем открытия симистора, который контролирует нагрузку. Хорошо подойдет для настройки яркости лампочек накаливания.

Для лампочек накаливания с тиристором

Данная сборка регулирует накал обычных лампочек. Регулятор напряжения 220 В на тиристоре своими руками конструируется из диодного моста, конденсатора, двух резисторов — постоянного и переменника. Селектором последнего меняется влияние на ключ этого тиристора, что модулирует его пропускную способность по току.

Советы

Фазные регуляторы создают значительные помехи в сети, поэтому на кабель питания ставят сглаживающие фильтры. Самыми элементарными такими приспособлениями являются ферритовые кольца (часто их имеют шнуры компьютерные, от мониторов). Есть разборные блочки с ними, устанавливаемые защелкиванием, но также можно такие кольца взять от трансформаторов от б/у плат с микросхемами.

Все элементы обязательно изолируют, учитывают, что на них подается 220 В и значительный ток.

Предостережения по индуктивной нагрузке

При высокоиндуктивной нагрузке, для которой характерно отставание тока напряжения, тиристоры могут не закрываться до конца, есть риск поломки обслуживаемых приборов — дрелей, шлифмашинок, болгарок. Поэтому надо уточнять на спецфорумах параметры сборки для такого оснащения, для него есть именно специализированные устройства — регуляторы оборотов.

Тиристорный РН хорошо функционирует в коллекторных двигателях со щеточными узлами, в асинхронных устройствах изменять обороты не сможет.

Видео по теме

Источник

admin
Делаю сам
Adblock
detector