Простой контроллер для светодиодов своими руками

Содержание
  1. Hyundai Elantra когда-то была GL 😉 › Бортжурнал › Перегорают светодиоды? Делаем простейший драйвер своими руками.
  2. RGB СВЕТОДИОДНЫЙ КОНТРОЛЛЕР
  3. Описание системы
  4. Железо
  5. Софтовые фишки
  6. Описание режимов и настроек
  7. Управление
  8. Как сделать RGB контроллер для ленты своими руками
  9. Принцип действия
  10. Вариации подключения
  11. Две ленты светодиодного типа
  12. Лента в 20 метров, которая разделена на 4 отрезка
  13. Изготовление контроллера собственноручно
  14. Будет ли стоить игра свеч?
  15. Светодиодный драйвер своими руками
  16. Светодиодный драйвер своими руками для мощных светодиодов
  17. Модификации схемы с дополнительным резистором и стабилитроном
  18. Модификация схемы для «диммирования» светодиодов
  19. Собираем простой светодиодный драйвер самостоятельно на схеме LM 317
  20. Простейший драйвер на микросхеме LD1585CV, либо LM1084IT для самостоятельной сборки
  21. Диммируемый аналоговый светодиодный драйвер своими руками
  22. Драйвер своими руками для мощных светодиодов используя схему QX5241
  23. Сообщества › Электронные Поделки › Блог › Самая простая схема плавного розжига светодиодов

Hyundai Elantra когда-то была GL 😉 › Бортжурнал › Перегорают светодиоды? Делаем простейший драйвер своими руками.

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

И вот как-то раз это явление достало меня окончательно и я, бегло пробежавшись глазами по записям в блогах одноклубников, решил сделать подсветку приборки «вечной» линейным стабилизатором напряжения L7812CV, +12в, что, естественно, никакого толка не дало и лента сгорела, как ни в чем не бывало 🙂

Вот он, виновник торжества.

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди и я, человек который слишком мало копал, прежде, чем что-то сделать…Все мы ошибаемся, что поделать, потому и половина бортового журнала — это работа над ошибками… 🙂

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

«Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.»

Теперь понятно, почему с долбанными линейными стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это резисторами!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
КАК ЭТО ДЕЛАТЬ, СМОТРИМ ТУТ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Источник

RGB СВЕТОДИОДНЫЙ КОНТРОЛЛЕР

Описание системы

Захотелось мне сделать RGB свет для видео из китайских компонентов. RGB – значит нужен ШИМ контроллер, значит нужно его сделать! Вот и сделал: GyverRGB – контроллер для RGB светодиодных лент со множеством режимов и настроек, модульной структурой и различными способами управления.

Железо

Используется обыкновенная RGB светодиодная лента с общим анодом (контакты 12V G R B). Я использовал два ряда ленты с плотностью 120 диодов на метр, чтобы иметь хороший запас по яркости даже на одном цвете.

В проекте используется Arduino NANO (микроконтроллер ATmega328p). В качестве 100% совместимого аналога можно использовать Arduino UNO/Pro Mini.

Я рассматривал два варианта драйвера для светодиодной ленты: китайский RGB LED amplifier и самодельный драйвер из трёх МОСФЕТ (полевых) транзисторов. LED amplifier очень удобен в подключении, но имеет жуткий недостаток: на высоких частотах у него поднимается нижний порог яркости, что приводит к трате оттенков и вообще некорректной работе режимов.

Читайте также:  Костюм карабаса барабаса взрослый своими руками

Вывод: если контроллер не планируется использовать для видео света, то можно поставить LED amplifier и в настройках контроллера поставить низкую частоту (490 Гц), глаз такую частоту не заметит, но снятое на камеру видео будет «стробить». Если планируется использовать контроллер для создания видео света, то в обязательном порядке нужно делать свой драйвер. Также свой драйвер позволит работать с большими отрезками ленты, т.к. транзисторы можно поставить очень мощные.

Полевой транзистор подойдёт практически любой (99%), наковырять можно из материнской платы. Список популярных МОСФЕТов в корпусе to-220: IRF3205, IRF3704ZPBF, IRLB8743PBF, IRL2203NPBF, IRLB8748PBF, IRL8113PBF, IRL3803PBF, IRLB3813PBF (в порядке роста стоимости). Список популярных МОСФЕТов в корпусе D-pak: STD17NF03LT4, IRLR024NPBF, IRLR024NPBF, IRLR8726PBF, IRFR1205PBF, IRFR4105PBF, IRLR7807ZPBF, IRFR024NPBF, IRLR7821TRPBF, STD60N3LH5, IRLR3103TRPBF, IRLR8113TRPBF, IRLR8256PBF, IRLR2905ZPBF, IRLR2905PBF (в порядке роста стоимости).

Управление контроллером предусмотрено тремя способами:

Питается система от 12V, от блока питания или батареи из трёх литиевых аккумуляторов. При питании от аккумуляторов предусмотрен «вольтметр» – делитель напряжения на резисторах, позволяющий измерить напряжение на батарее для вывода его на дисплей.

Софтовые фишки

Описание режимов и настроек

Управление

Энкодер

ИК пульт

Bluetooth

Загрузить приложение GyverRGB (для Android) и наслаждаться!

Кнопка (с версии 1.2)

Кнопка вариант 2 (с версии 1.3)

Источник

Как сделать RGB контроллер для ленты своими руками

Как сделать RGB контроллер самостоятельно в домашних условиях

Выделенные цветовые зоны в гостиной или спальне – это всегда красиво и даже эстетично. Естественно, что для того, чтобы правильно произвести все работы по установке потолка, монтаже светодиодной ленты и всего иного сопутствующего оборудования, требуется немало трудиться.

Но зато конечный результат будет приводить в восторг очень долго при правильном исполнении. Ассортимент светодиодных цветовых лент достаточно обширный и их правильный подбор – дело достаточно сложное.

И все-таки, какими бы они ни были хорошими, для их правильного функционирования требуется блок питания на 12 В (куда реже 24 В), и, естественно, блок управления с параметрами, которые подходят именно под подобранную полосу света. Но что это такое, какие он выполняет функции? И если так он нужен, есть ли возможность сделать RGВ контроллер в домашних условиях?

Принцип действия

По своей сути такой тип контроллера – это является мозгом домашней подсветки. Все команды, которые подаются с пульта ДУ, обрабатываются им, а далее требуемый сигнал будет подан на светодиодную ленту, зажигая один из возможных цветов. Контроллеры могут отличаться и по степени мощности, и по количеству выходов, а именно подключаемых кинему полос света. Есть также устройство с пультом, а есть и без пульта дистанционного регулирования.

Все дело заключается в том, что аналоговая светодиодная лента при полученном сигнале с устройства для управления загорается тем или другим, но единым цветом по общей длине. У цифровой есть возможность подключения каждого светового диода отдельным цветов. Именно по этой причине контроллер для световой цифровой полосы более высокотехнологичный и его стоимость намного больше.

Вариации подключения

Естественно, что наиболее простым методом подключения прибора для регулирования RGВ будет вариант, при котором подключена лишь одна полоса светодиодного типа или даже ее отрезок. Но этот метод не самый практичный, хотя он и не будет требовать включения в электрическую цепь каких-то других приборов.

Все дело заключается в том, что на одну линию подобного устройства возможно подключение не больше 6 метров полосы светового типа, что для комнатной подсветки будет точно недостаточным. Если же длина отрезка получится больше, то на светодиоды, которые ближе всего находятся к контроллеру, нагрузка возрастает, и в результате этого она просто перегорят.

Есть и другая проблема при подключении светодиодных длинных полос – большая по мощности нагрузка на самые тонкие провода светодиодной ленты. При их нагревании основание из пластика начнет плавиться, и в конечном итоге жилы останутся без изоляции или просто перегорят. А по этой причине, при необходимости освещать более длинные отрезки, используют следующие методы и схемы подключения.

Две ленты светодиодного типа

При подобном подключении к контроллеру для RGВ полосы света потребуется пару устройств питания и усилитель. Особенность такого типа подключения заключается в том, что ленточные отрезки должны подключаться параллельным методом. Хоть у них и одно, а именно общее устройство электронного типа для управления, питание должно быть подано на каждую по отдельности. Усилитель применяется для более четкого и ясного света диодов. Другими словами, напряжение будет поступать на 2 блока питания, а далее с одного из них будет идти на усилитель и дальше на полосу света.

Со второго блока питание начнет поступать на электронный управляемый блок. Между собой прибор для управления и усилитель связаны дополнительной лентой светодиодного типа. Схематически это подключение представлено на фото, представленной выше.

Лента в 20 метров, которая разделена на 4 отрезка

При подсоединении дополнительного блока питания напряжение от него будет идти напрямую на усилитель. Выглядит такой тип подключения приблизительно как на фото выше. Разобравшись со способами подключения контроллеров и их разновидностями, можно попробовать сделать этот прибор собственноручно в домашних условиях. Требуется лишь помнить о том, что требуется соизмерять мощность прибора и его напряжение выходного типа с длиной и потреблением электрической энергии светодиодной ленты.

Читайте также:  Ремонт стиральных машин самсунг s803j своими руками

Изготовление контроллера собственноручно

Схема такого устройства не сложная, и единственный недостаток заключается в том, что у сделанного собственноручно контроллера будет весьма малое количество каналов, хотя для применения в домашних условиях этого вполне хватает. Наверняка в квартире у каждого есть неисправная китайская гирлянда с небольшой по размеру коробочкой 0 блоком для управления устройства. Так вот, главные детали как раз берут именно из нее. Именно внутри такого блока для управления гирляндой можно увидеть 3 выхода тиристорного типа. Это и будут направления В, G и R.

Как раз к ним и требуется подключать светодиодную полосу. Никакого охлаждения посредством тиристоров не требуется, а отсутствие блока питания легко решаемо. Не будет большой проблемы найти нерабочий системный блок от ПК. Так вот, трансформатор от него прекрасно подойдет для этой цели.

И в конечном итоге получится сэкономить не просто на приобретении контроллера, а еще и на покупке блока питания, при этом блок может стоить куда больше, нежели само устройство управления лентой светодиодного типа. Естественно, что никакого пульта дистанционного управления не будет, но все-таки можно подключать светодиодную ленту к выключателю трехклавишного типа, не потратив на приобретение дополнительных устройств ни копейки.

Будет ли стоить игра свеч?

Если же рассмотреть все с точки зрения логики простого человека, который не увлечен радиотехникой, то, естественно, приобрести дешевый контроллер будет не дороже. Кроме того, не будет потеряно время на создание своими руками. Но для истинного радиолюбителя, а иногда и просто человека увлеченного, собрать такое устройство самостоятельно куда приятнее, чем покупать где-то в магазине. А вот попробовать сделать контроллер собственноручно все же стоит, потому что удовольствие от проделанной работы (и к тому же удачной) ничто не сможет заменить.

Источник

Светодиодный драйвер своими руками

В данной статье мы рассмотрим много способов, позволяющих собрать драйверы самостоятельно, не используя специальных знаний. Много букв и картинок.

В настоящей статье рассмотрим ряд простейших и не очень схем, благодаря которым можно будет собрать светодиодный драйвер своими руками. Ранее мы начинали тему по этому поводу. Однако, большое количество читателей просили сделать более обширную статью без «воды» и не нужной информации. В принципе, наш журнал старается только такой контент предоставлять.

Поэтому и начнем. Статья будет большая, поэтому запасаемся терпением и приступаем.

Светодиодный драйвер своими руками для мощных светодиодов

Это одна из простейших схем, которую можно собрать своими руками из подручных материалов.

Входное напряжение до 15 В;

Драйвер получится линейным и КПД определяется формулой: VLED / VIN

где VLED – падение напряжения на светодиоде,

VIN – входное напряжение.

Согласно законов физики чем больше разница между входным напряжением и падением на диоде и чем больше ток драйвера, тем сильнее греется транзистор Q1 и резистор R2.

VIN должно быть больше VLED на, как минимум, 1-2В.

Повторюсь, что схема очень простая и ее даже можно собрать простым навесным монтажом и она БУДЕТ работать без проблем.

Расчеты:
— Ток светодиода примерно равен: 0.5 / R1
— Мощность R1: мощность, рассеиваемая резистором, составляет приблизительно: 0,25 / R3. выберите значение резистора не менее двукратной рассчитанной мощности, чтобы резистор не раскалился.

Модификации схемы с дополнительным резистором и стабилитроном

Модификация схемы с диодом Зенера

А теперь будем собирать светодиодный драйвер своими руками, используя некоторые модификации. Данные модификации имеют изменения касаемо ограничения напряжения первой цепи. Допустим, нам надо держать NFET (G-контакт) меньше 20 В и если мы желаем использовать источник питания выше 20 В. Данные изменения необходимы, если мы будем использовать с схемой микроконтроллер или подключать компьютер.

Если входное напряжение ниже 10В, замените R1 на 22кОм.

Используя данные модификации можно получить возможность работы схемы с напряжением 60 В.

Используя данные модификации теперь можно преспокойно использовать микроконтроллеры, ШИМ или вообще подключаться к компьютеру.

Данные вещи рассматривать не буду. Но если заинтересует, то добавлю статью и такими схемами.

Модификация схемы для «диммирования» светодиодов

Собираем простой светодиодный драйвер самостоятельно на схеме LM 317

Рассмотрим еще один очень простой (простейший) драйвер, который можно собрать даже без пайки, плат и т.п.

Максимальное входное напряжение для такого драйвера сне должно превышать 37 В. И должно быть на 3D выше падения напряжения самого светодиода.

Сопротивление R1 рассчитываем по формуле:

Микросхема LM317 однозначно будет «кипятком» и необходим в обязательном порядке радиатор.

Драйвер, как и в первом случае будет линейны и поэтому для максимального КПД необходима минимальная разница между VIN и VLED.

Простейший драйвер на микросхеме LD1585CV, либо LM1084IT для самостоятельной сборки

Т.е. для тока в 550 мА нужен резистор на 2,2 Ом. Для расчета резисторов можете использовать наши калькуляторы.

Мощность резистора рассчитывается по формуле: 1,56 / R1

Еще одним недостатком данной схемы стоит отметить невозможность диммирования. Это возможно только с заменой резистора.
Данные регуляторы LD1585CV, либо LM1084IT-ADJ предпочтительнее стандартного LM 317 который мы рассматривали выше, по причине того, падение напряжение у него выше 3,5 В. А у LD1585CV, либо LM1084IT-ADJ от 2,4 В.

В схеме используется конденсатор на 6,3 В или выше от 10u до 100u.

Диммируемый аналоговый светодиодный драйвер своими руками

Рассмотрим теперь еще одну схему на регуляторе LD1585CV. Особенность от предыдущей схемы в том, что используя транзистор мы получим реальный аналоговый драйвер, позволяющий регулировать яркость диодов.

Регулятор понижает напряжение с соотношением между R2+R4 и R1.

Читайте также:  Мебель для тату салона своими руками

Токоограничивающая цепь уменьшает сопротивление R2, понижая выход регулятора напряжения.

Эта схема позволяет установить напряжение на светодиоде на любое значение с помощью дисплея или «ползунка». Также она позволяет использовать и подстроечный резистор для диммирования.

Драйвер своими руками для мощных светодиодов используя схему QX5241

Не смотря на то, что схема большая, она также достаточно проста и в ней используется не много поболее деталей, чем в предыдущих. На коленях такую схему не собрать и понадобится плата. Сама микросхема очень мелкая и необходимо будет большое внимание, чтобы пропаять пины.

Конденсатор С2 керамический.

Конденсатор С3 керамический, емкость 10 мкФ. Напряжение – не менее чем в 2 раза больше, чем входное.

Резистор R1 рассчитываем по формуле: R1 = 0.2 / I,

где I – требуемый ток драйвера.

Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. Рассчитанный ток не менее тока требуемого для драйвера.

Q1– N-канальный полевой транзистор с минимально возможным сопротивлением в открытом состоянии. Естественно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Как правило. можно взять SI4178, IRF7201.

Дроссель L1 с индуктивностью 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Интересно, что пин 2 у микросхемы можно использовать для диммирования. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

В общем, мы рассказали большинство известных простых драйверов, которые можно собрать своими руками не прибегая к макетированию плат. Есть еще некоторые другие, но о них как-нибудь в другой раз. Если этого будет не достаточно для читателей.

Но я в очередной раз замечу, что сам уже давно не паяю драйвера, а покупаю их за сущие копейки и полностью работоспособные.

Источник

Сообщества › Электронные Поделки › Блог › Самая простая схема плавного розжига светодиодов

Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать.

Изобретать велосипед я не стал, и решил немного поGoogleить При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы. Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.

А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.

Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:

Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу «ЛУТ» где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное «прощает ошибки» и так же не требует наличия паяльной станции.

Немного упростив исходную схему решил её перерисовать:

R3 — 10К Ом
R2 — 51К Ом
R1 — от 50К до 100К Ом (сопротивлением этого резистора можно управлять скоростью розжига светодиодов).
С1 — от 200 до 400мк Ф (можно и выбрать другие ёмкости, но превышать 1000мк Ф не стоит).

На тот момент мне нужны были две платы плавного розжига:
— для подсветки ног
— для плавного розжига приборной панели

Так как о стабилизации светодиодов подсвечивающих мои ноги я уже давно позаботился, то в схеме розжига КРЕНка уже была не нужна. Подробнее о самом простом и надёжном способе стабилизации читайте в этом сообществе, ну или на «худой конец» в моём БЖ.

Достоинствами данной схемы является то, что подключаемая нагрузка зависит только от возможностей блока питания (аккумулятора авто), и от полевого транзистора IRF9540N, который очень надежен (дает возможность подключить через себя 140Вт нагрузки при токе до 23А (информация из интернета). Схема сможет выдержит 10 метров светодиодной ленты, но тогда транзистор придется охлаждать, благо в таком исполнении можно закрепить на полевик радиатор (что конечно приведёт к увеличению площади схемы).

При первом тестировании схемы было снято коротенькое видео:

Изначально R1 стоял номиналом 60К Ом и мне не понравилось то что розжиг до полной яркости занимал около 5-6 секунд, в последствии к R1 был допаян ещё один резистор на 60К Ом и время розжига уменьшилось до 3 секунд, что для подсветки ног было самое то.
А так как схему розжига для подсветки ног необходимо было подключать в разрыв основной схемы питания, то не долго думая как же её заизолировать, просто запихнул её в кусок велосипедной камеры.

Подключив схему плавного розжига снял ещё одно видео:

На этом всё, благодарю всех тех кто всё таки смог дочитать сей пост до конца.
Конечно же для кого то это будет жёстким баяном, но надеюсь найдутся товарищи которым будет интересно.

Источник

admin
Делаю сам
Adblock
detector